
F
ault tree analysis (FTA), reliability block dia-
grams (RBD) and event tree analysis (ETA) are 
established methods for assessing potential risks 

of hazardous events, in particular when resulting from 
coincidental events. Combining the Boolean algebra, 
probability theory and reliability data, they allow 
quantitative estimation of intrinsic risks from technical 
equipment like machinery control, aerospace systems 
or vehicle functions, among many others.

The quantitative reliability theory was mainly 
developed between the 1960s and the 1980s. At that 
time, simplifications and approximations for the math-
ematical formulae were needed to achieve calculation 
results within acceptable time, regarding restricted 
computer resources.

Our investigation revealed that some of these sim-
plifications and approximations, often assumed as precise 
calculations in secondary literature, can lead to wrong 
results in quantitative risk assessment. When faults are 
combined, and individual latency periods exist, the cur-
rently established approximations may lead to results 
which are too optimistic in comparison with a precise 
probabilistic approach. 

This publication proposes a new approximation for 
the computation of the related probabilities. The ap-
proach provides an upper-bound estimation. Using the 
developed formulae, the under-estimation of multiple-
event probabilities can be avoided. 

In addition, certain vagueness and over-simplification 
in the probabilistic treatment of events with latency peri-
ods can be eliminated. Examples of related shortcomings 
in the literature can be found, down to the early roots of 
reliability theory.

The theory for the determination of random fault 
probabilities distinguishes between following functions:

1.  The unreliability P(T) — also found represented as 
F(T) — is a measure of the probability that a fault 
occurs during a given time span T, often called mis-
sion time (also system lifetime), during which the 
system is operating

2.  The unavailability Q(t) is a measure of the prob-
ability that a fault (or combination of faults) is pres-
ent at a given point in time t
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NOTE: It is worthwhile to mention that certain 

secondary literature does not clearly distinguish between 

these functions, despite their different meanings and their 

time dependencies [Refs. 1 and 2].

One can find two elementary types of models for sys-

tems reliability and safety:

1.2.1. Complete Separation of Control System and 

Supervising (Safety) System

Such a system (safety) architecture is often found in 

machinery control, where the equipment under control 

(EUC) and the safety related system (SRS) are imple-

mented independently (see IEC 61508) [Ref. 3].

The appropriate metric for a probabilistic safety 

evaluation is the so-called average probability of dan-

gerous failure on demand (PFDavg) of the SRS, if safety 

requirements are exclusively allocated to the SRS, and 

interventions (fault reactions) of the safety functions of 

the SRS are needed only in the “low demand mode of 

operation” [Ref. 3].

In the following, we will use the average unavailabil-

ity Qavg synonymously for the PFDavg:

 

1.2.2. Embedded Supervising (Safety) Systems

If a separation between the control system and the 
supervising (safety) system cannot be argued, the over-
all system needs to be evaluated with regard to fault 
occurrence probability P. An example is a brake control 
system for automotive applications where the core sys-
tem performs both the control functions (e.g., for ESP 
interventions), the fault diagnosis and the failure reac-
tion in the same control unit.

In this case, safety requirements are allocated to the 
overall system and the appropriate metric for a probabi-
listic safety evaluation is the so-called probability of dan-
gerous failure per hour (PFH) [Ref. 3].

 

PFDavg = Qavg (1)

PFH = (2)
Psys(T)

T
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This definition is provided by IEC 61508-1:2010, 
section 7.6.2.9, defining the PFH as “the average frequen-
cy of a dangerous failure of the safety function” [Ref. 3].

Notes: ISO 26262 defines a similar metric, called 
the “probabilistic metric for random hardware failures” 
(PMHF). Also, other industry sectors (aerospace, for in-
stance) require equivalent probabilistic assessments [Ref. 4].

Per the definition, probabilities P are values 0  P  1. 
This is valid for every time interval within the mission 
time T. The probability of random fault occurrence P(t) 
rises monotonically with increasing time t. For a given 
time interval T, this means that P(T)  P(t) for every 
point in time [0  t  T]. In the literature dealing with 
system reliability and system safety, this probability is 
also called the unreliability of a system.

It is worthwhile to mention that these state-
ments are valid for every consideration of random 
faults, regardless of whether they are single faults or 
logical combinations of more than one fault.

If different faults are independent from each 
other, each of these faults has its individual occur-
rence probability function Pi(t).

If we seek the system fault occurrence proba-
bility function Psys(t), we need to know which logical 
combinations of individual faults lead to the system 
fault under analysis. 

To evaluate systems’ reliability and safety, sev-
eral analysis methods have been developed, provid-
ing models for multiple fault consideration based 
on Boolean algebra. Such Boolean analyses include 
Fault Tree Analysis (FTA), Event Tree Analysis 
(ETA) and Reliability Block Diagrams (RBD).
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Figure 1 — Examples for Fault Occurrence Probability Functions P(t).
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To determine the individual fault occurrence prob-
ability functions Pn(t), specific reliability data in terms of 
failure models are needed.

Various failure models for this are described in 
the literature. Examples are constant failure rates and 
Weibull-distributed failure rates, among others.

Such failure models allow for the calculation of fault 
occurrence probability in function of time P(t), based on 
one or few parameters that determine the shape of Pn(t).

As we see, the occurrence probability P(t) for mul-
tiple combinations of individual faults is generally a com-
plex function.

(3)
In particular, these Boolean analyses provide the 

possibility to evaluate redundant system architectures, 
where critical system faults may result from logical AND-
combinations of individual faults.

If the following conditions are given:

1. the faults F1…FN are mutual independent, and
2. for none of the potential faults F1…FN tests or repair 

apply (i.e. no individual latencies have to be consid-
ered, which is treated in section 2) during the whole 
mission time T

the occurrence probability of the AND-combination 
of N faults at any point in time [0  t  T] then is deter-
mined by the product:

Figure 2 — Time Dependency of the Occurrence Probability for an AND-Combination of Three Independent Faults 
Without Intermediate Repair or Inspection (Non-Repairable System).
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Even if all failure rates rn are assumed as constant and rnT<<1 and thus 
(quasi-linear functions in time),

 
the probability of AND-combinations if two or more faults is non-linear.
In conclusion, no time-independent failure rate can be derived for 

AND-combinations of faults. The average of the so-called PFH for such 
AND-combinations then is determined by the occurrence probability 
PAND(T) over mission time divided by the mission time T.

 

Note: It is worthwhile to mention that both the fault occurrence prob-
ability P(t), and its first derivate dP/dt, also known as failure density [Ref. 5] 
or failure frequency [Ref. 3], are approximate polynomial functions of t.

The previous section considered combinations of faults, without taking 
into account any possibility of removing faults after their initial occurrence 
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within the mission time. This is also 
called a non-repairable system in 
the literature [Ref. 6].

But if there are certain points in 
time within the mission time where 
the absence of fault occurrence can 
be approved, this changes the proba-
bility of the presence of related faults 
after these points in time. Every 
point in time ti where the absence of 
a certain fault can be ensured “sets 
a new game” for the random fault 
occurrence until ti+1, the next of such 
points in time.

The next focus is the unavail-
ability Q(t) describing the probabil-
ity of fault presence in a function of 
time. In the following, we will use 
the expression latency for the time 
interval [ti, ti+1] between two “reset 
points” of the unavailability Q(t).

Note: It is worthwhile to men-
tion that it doesn’t make a differ-
ence if the approval of the fault-free 
state is achieved by human inspec-
tion, intrinsic fault diagnostics or 
removal of the fault by repair. The 
probability of fault presence (un-
availability) at the related point of 
time is zero in any of these cases. 
However, certain literature calls 
systems with such characteristics 
“repairable systems” [Ref. 6].

The consideration of latencies 
bears some fundamental challenges 
for the probabilistic approach to de-
termine reliability and safety metrics.

The probability of multiple-
point fault occurrence cannot be 
treated in the same manner as the 
non-repairable system described in 
section 1.3 because this probability 
is not determined by the unreli-
ability functions P(t) but by the 
unavailability functions Q(t) of each 
related fault.

If the individual unavailability 
functions Qn(t) are known, the over-
all unavailability function Q(t) of the 
multiple fault combination is deter-
mined by 

Figure 3 — Time Dependency of the Fault Occurrence Probability P(t) in for 
Three Faults with Constant Failure rates. (Note: It is worthwhile to mention 
that both the fault occurrence probability P(t), and its first derivate dP/dt, also 
known as failure density [Ref. 5] or failure frequency [Ref.3], are approximate-
ly polynomial functions of t.)

1 — e—rn t rn t (4)

PFH = 
Pn(T)N

n=1 T
(5)

(6)Q(t) = Qn(t)
N

n=1
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In case of latencies, the individual unavailability functions Qn(t) are non-
monotonic functions such that their product Q(t) may become complex. In 
particular, if the latency intervals of the individual faults are different, Q(t) 
can exhibit a quasi-erratic behavior because each “reset point” of each un-
availability function Qn(t) leads to a discontinuity in Q(t).

The correct determination of safety metrics like PFDavg (mean un-
availability) would require an integration over the mission time T, fol-
lowed by averaging:
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As we will show in section 4, 
the determination of the PFH is even 
more complex in this case. 

As we see in the example in the 
previous section, the consideration 
of time-dependent effects gener-
ally complicates the probabilistic 
assessment of systems’ reliability 
and safety, as seen in IEC 61508-6 
[Ref. 3].

The fundamental issue is that, 
in addition to the pure Boolean logic, 
some deterministic timing behavior 
also needs to be modeled. In reality, 
the behavior of redundant systems 
after occurrence of faults will be 
even more complex. Fault detection 
(either implemented by internal 
functionality or by external supervi-
sion) will lead to state transitions 
from the fault-free state to certain 
fault reaction states (e.g., functional 
degradation, repair modes, etc.).

Generally, no probabilistic mod-
el is yet established that covers all 
aspects and possible effects of such 
time-dependent state transitions.

An approach for modeling the 
time dependency is the Markov 
model, in which not only fault oc-
currence probabilities (represented 
by failure rates) but also the fault 
removal actions by repair are treat-
ed as random events in time (rep-
resented by repair rates). Despite 
this, the Markov model provides 
closed mathematical solutions be-
cause it can be transformed into 
linear differential equations. The 
underlying assumption that fault 
detection and repair themselves are 
random events can lead to a proba-
bilistic assessment of critical fault 
coincidence being non-conservative 
(i.e., too optimistic) in certain cases 
[Ref. 7 and 8]. 

Other time-dependent effects 
result if not only the Boolean AND-
combination of faults is relevant, 
but also the sequence of their occur-

Figure 4 — Illustration of an Unavailability Function Q(t) as a Product of 
Two Independent Unavailability Values with Different Timing Characteristics.
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rence. For instance, the unavailability of an emergency 
release valve is only critical if it occurs before a dangerous 
overpressure is present. The mathematical treatment of 
such event sequences leads to complex models like dy-
namic FTA or Petri nets which are described in the litera-
ture but are not broadly applied in the industry [Ref. 6].

Let us consider a system element with certain random 
failure modes that are relevant for the reliability or 
safety of a redundant system. In a periodic sequence of 
time intervals  this element is inspected whether the 
fault is present or not.

If the fault is not present, we know now that the 
maximum time for random fault occurrence is  (until 
the next inspection). If the fault is present at the point 
of time of inspection, a time to repair may be needed to 
achieve the fault-free state again.

If we know the unreliability function P(t), we can 
determine the probability of the fault occurrence for 
each inspection interval.

In case of a constant failure rate r (and only in case 
of constant failure rates), the probability of fault occur-
rence within every inspection interval is given by

The unavailability Q(t) (i.e., the probability of 
fault presence) rises from zero to its maximum value 
between the start and end of any consecutive inspec-
tion interval. It is worthwhile to repeat that the unre-
liability P(t) (i.e., the fault occurrence probability) is a 
monotonically increasing function and is not affected 
by periodic inspection.

The next illustration shows that the mean un-
availability for a fault with constant failure rate is 
derived as

If a repair can be made during the operation of the 
system, the Mean Time To Repair (MTTR) needs to be 
considered along with the unavailability. In the literature, 
we find the following formula for this case:

As only in redundant systems the periodic inspection 
and repair mitigate the risk of critical events, the above 
considerations for the probability of fault presence 

(unavailability) Q(t) of single faults need to be set into 
the context of multiple faults.

The question is how to determine the probabilistic 
metrics PFDavg and PFH for combinations of faults with 
latencies?

The result of our literature investigation was that this 
topic seems merely treated in a self-consistent probabi-
listic framework.

Our first observation is that most of the literature is 
focused on the determination of the unavailability Q. But 
the unavailability is only suitable for reliability and safety 
evaluation in cases where control and supervising systems 
can be regarded as independent, and only the supervising 
system shall be assessed (as we explained in the introduc-
tion, see section 1.2.1).

The question of how to obtain a suitable esti-
mation of the average failure rate (PFH), needed for 
assessing embedded supervising/safety systems (see 
section 1.2.2), is not addressed at all in most of the 
investigated literature.

Our second observation is that the influence of 
latencies on the probabilities of multiple faults does not 
seem to be clearly addressed, which may lead to incor-
rect probabilistic assessment results.

Besides the already cited literature, our investigation 
included the following sources:

• International standards addressing and describing 
the probabilistic assessment of (multiple) fault oc-
currence probabilities [Refs. 3 and 4]

• International and national standards addressing and 
describing the probabilistic assessment via fault tree 
analysis [Refs 1 and 8]

• Books dealing with general approaches on the as-
sessment of systems’ reliability and safety [Refs. 5, 
6, 7, 10 and 11]

• Guidelines on the application of probabilistic assess-
ment of systems’ reliability and safety in the context 
of different industry sectors [Refs. 1, 2 and 12] 

• Articles in different journals on systems’ reliability 
and safety, which deal in particular with the effects 
of periodic inspection, maintenance and repair of 
redundant systems [Refs. 8, 13 and 15]

It is worthwhile to mention that international stan-
dards that require probabilistic risk assessment, like IEC 
61508 [Ref. 3] or ISO 26262 [Ref. 4], do not provide 
precise requirements on how to accomplish it in a cor-
rect mathematical framework.

As we will outline, such a correct mathematical 
framework seems not yet fully established and differ-

Q( 1 — e1—r  r  if  r  << (8)

Qavg  
1

2
r  (9)

Qavg  1 — e1—r  r  MTTR (10)
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ent approaches are published. This makes it difficult for 
analysts and assessors to obtain certainty that safety and 
reliability analyses provide correct or at least sufficiently 
conservative results.

In the case that different faults have all the same la-
tencies <T and the same periodic inspection points 
in time (i.e., unique inspection intervals between t=0, 
, 2 , …), one can consider the first time interval  as 

time basis for the determination of the probability that 
all relevant faults occur within [0… ]:

 
For this first inspection interval, and only for this, 

the unavailability Q and the unreliability P are identical:

 

In the case of constant failure rates r
1
…r

N
, the prob-

ability of fault occurrence within this inspection interval 
(and consecutive ones) is given by

For the above approximation, the mean unavailabil-
ity is then calculated as

Let us consider the possibly that the system lifetime 
is not an integer multiple of . T then decomposes into 
M-1 complete inspection intervals and a Mth residual 
time interval 0 < res <= .

In the Mth time interval, the mean unavailability 
may be equal or less (but not greater) than for complete 
inspection intervals of duration .

Hence, the above approximation provides an up-
per bound estimation of the mean unavailability over the 
whole system lifetime T, regardless of whether T is an 
integer multiple of  or not. Such we can derive:

Surprisingly, certain literature provide a different 
formula for the determination of Qavg by multiplying the 
means of each unavailability Qn_avg, being approximately 

1/2 * rn *  (see above, or Ref. 14). But this mathemati-
cal operation provides lower values than the mean of the 
product as previously described.

This approach has already been criticized [Ref. 3].
An upper bound for the average failure rate PFH in 

every inspection interval is easily derived:

If we now consider that different inspection intervals 
n may exist for different faults Fn, the previous con-

siderations will not apply any longer because there is 
no unique periodic time base for the calculation of P 
and Q.

Figure 6 illustrates the complexity of the unavail-
ability and unreliability in function of time for an exam-
ple of three different inspection intervals.

The “reset points” where Q(t) falls to zero because 
one of the individual saw-tooth curves of Qn(t) is zero 
exhibit a quasi-erratic timing. This is especially true if the 

n do not have a least-common multiple less than half of 
the system lifetime. In this case, it is not possible to find a 
periodicity in the plot.

The plot of the unreliability P, being the “memory” 
of fault probability that is accumulated from each inter-
section after Q is reset to zero, also exhibits an irregular 
aspect. 

The illustrations above were derived by chart cal-
culations. The determination of P and PFH required 
complex counter and memory functions and treat integer 
values only for the points t in time and the inspection 
intervals n. To treat floating point values for these pa-
rameters, even a numerical integration would be required 
for the computation of P(t).
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In this example the inspection intervals ( 1, 2, 3) 
are chosen such that no periodicity is reached within the 
exemplary system lifetime (T=100h) because the least 
common multiple is greater than T.

The example is chosen such that none of the n is an 
integer multiple of another. Hence the points in time ti, 
where at least one individual unavailability Q

n
(t) is reset 

to zero, make up a series that appears erratic within the 
system lifetime, despite being determined by three peri-
odic functions.

At any of these “reset points” ti the probability of 
triple fault coincidence is zero because the certainty of 
the absence of at least one of the contributing faults, i.e., 
Qn(ti

)=0, results in the product of the unavailability val-
ues Q(ti)=Q1(ti)*Q2(ti)*Q3(ti) being zero, as well.

Due to the dissimilar inspection intervals n, the 
time intervals between two reset points [ti…ti+1] vary 
considerably as we see in the illustration.

However, it is obvious that such intervals can be 
shorter, but never longer than the smallest value of the 
inspection intervals.

Hence, we can derive a characteristic value that 
we will call the maximum fault accumulation time 
(MFAT) for N independent faults with individual in-
spection intervals:

This time base can now be used similarly for prob-
ability estimations, similarly as it is the case for unique 
inspection intervals  as described in section 3.2.

Seeking the probability of coincidence that all three 
faults in the above example occur in any intersec-
tion interval, we see that at the reset points ti, being 
the integer multiple of one of the inspection intervals, 
the probability of presence of other faults may (in the 
worst case) achieve the maximum value that is given 
by the product of the failure rate rn and the inspection 
interval n of the related fault (i.e., the maxima of the 
saw-tooth functions):

For each time interval of the length MFAT as de-
fined above, the upper bound for the probability of co-
incidence is hence given by the upper bound product of 
unavailability values Qn.

Although we investigated various dedicated litera-
ture, we didn’t find concrete proposals for how to cope 
with the estimation of Qavg and PFH in the case of dis-
similar inspection intervals.

The only approach we found is offered by some 
software tools (e.g., for quantitative fault tree analysis) 
that estimate the unavailability Q of the multiple faults 
by the product of the maximum unavailability Qn within 
the individual n:

For a conservative estimation of Qavg and PFH in 
this case we didn’t find accountable information.

The most important result of our research into various 
publications is that most of the investigated literature 
treats the probability of a fault’s occurrence (unreliabil-
ity) over system lifetime P(T) with much less intensity 
as the probability of a fault’s presence (unavailability) 
at representative points of time Q(t). Despite the 
fact that the determination of an average unreliability 
(PFH) is declared as necessary for the evaluation of 
certain system architectures (see section 1.2.2) and is 
addressed by several international standards for func-
tional safety like IEC 61508 [Ref. 3]and ISO 26262 
[Ref. 4] (among others), we found little information in 
the literature on how to determine this metric.

The second point we found remarkable is that for 
the influence of latencies, in particular the treatment 
of regular inspection for fault detection and repair, only 
certain literature provides the correct formulae for the 
unavailability Q with regard to multiple-point faults. 
Other sources provide formulae that are questionable, as 
described earlier. 

The third result is that we could not find a general-
ized treatment of dissimilar latencies in the literature. 

In conclusion, there is a need for an improved cal-
culation basis for the estimation of multiple-point fault 
probabilities and the influence of these probabilities on 
the commonly addressed metrics PFDavg 

and PFH.

To cope with the problem of dissimilar latencies, we 
developed a purely probabilistic approach. 

Let us consider the case of three faults, each with indi-
vidual failure rate and individual inspection interval, as 
illustrated in Figure 6.

N

n=1

rn 
nQmax  (17)

MFAT = min( ) (18)

Qn( n)  1 — e1—rn n rn  n
(19)

Q(MFAT) (20)

N

n=1

rn 
n
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The worst case occurs if the end of all inspection 
intervals n coincide in one point in time. Per definition, 
this is the end of a MFAT interval, being the end of the 
shortest inspection interval.

As such, every individual unavailability Qn rises 
within the MFAT interval from an initial value which has 
the upper bound 

Hence, we obtain an upper bound for the overall 
unavailability Q in function of time within every MFAT 
interval:

We obtain the estimate for the mean overall un-
availability Qavg with:

As Q(t) is estimated by the product of N linear 
functions in time (i.e., a polynomial function), this inte-
gral provides a closed mathematical solution.

We will call this less pessimistic (but still upper-
bound) estimation of Qavg in the following “polynomial 
probabilistic estimation.”

4.2.2. Example

We illustrate this for a triple fault:
Without loss of generality, we may assume that 1 

represents the minimum of the three individual n (i.e. 
1=MFAT).

If the other faults have longer latencies, i.e., 2 > 
MFAT and 2 > MFAT, they bring the maximum initial 

4.2.1. Upper Bound of the Average PFD

An upper bound for the mean unavailability can be 
obtained quickly, considering that if the products of 
failure rates and inspection intervals are small numbers 
(rn * n << 1), the function Q(t) within the MFAT in-
terval is a convex polynomial function always remain-
ing below the linear interpolation between the begin-
ing and the end of the MFAT interval.

Hence, using the linear interpolation as an upper 
bound for the estimation of Qavg we obtain:

We will call this — fairly pessimistic — estimation 
of Qavg in the following “linear probabilistic estimation.”

The following — less pessimistic — estimation of 
Qavg is a little more complex:

Without further assumption, we only know that 
within a MFAT interval, the individual unavailability 
values remain below their upper bound values, which are 
defined by:
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Figure 7 — Linear Interpolation of the Polynomial Un-
availability Function Q(t), Providing an Upper Bound.
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unavailability values into the MFAT defined by the dif-
ferences n between the n and MFAT

Hence, the individual unavailabilities within the 
MFAT interval cannot exceed the following upper bounds:

If we now apply the above integral for Qavg,we ob-
tain the polynomial function of t developing the integral 
over the product of the Q

n

Obviously, the polynomial for an AND-combination 
of faults with more than three different latencies will 
become more complex due to the increasing number of 
cross-terms of the n but it can be equivalently calculated 
for any higher polynomial order.

According to our literature investigation, this paper 
presents a new probabilistic treatment of dissimilar fault 
latencies for the case that the latencies result from peri-
odic inspection and repair.

In comparison to other approaches, such as Mar-
kov models, the proposed treatment of latencies in 
the assessment of multiple-point fault probabilities 
is based purely on probabilistic considerations in the 
context of deterministic timing behavior, without fur-
ther implicit assumptions.

In comparison to previously published approaches, the 
newly developed formulae provide credible upper-
bound estimations for the mean probability of fault 
presence (also called mean unavailability or PFDavg) 
and the mean failure frequency (also called PFH) of 
multiple-point faults.

For each multiple fault combination, these metrics 
can be calculated based on the individual failure rates (r) 

and latency parameters ( ). In a complex system, where 
generally many of such fault combinations need to be 
assessed (e.g., represented by the cut sets of a fault tree), 
each combination may require an individual calculation.

Despite the probabilistic background for their deri-
vation being complex, the presented formulae are suf-
ficiently simple for the integration into software tools for 
reliability and safety assessment. In comparison, a precise 
mathematical solution appears numerically difficult to 
implement for assessing complex repairable systems.

It is worthwhile to mention that using the applied 
worst-case approach for estimating the fault coincidence 
probabilities, even latencies that are longer than the mis-
sion time of a system, can be modelled. If, for instance, 
certain elements of a system are operating before mission 
start, the impact of potential fault accumulation in the 
pre-operation time spans can be assessed with the pre-
sented formulae as well. Such systems can be found in 
the automotive context, when some elements of a sys-
tem are operated outside the key cycles and others only 
during the key cycles.

One point that remains open after the above consid-
erations is the impact of variances in the inspection 
intervals, which we treated as strictly periodic in our 
approach. It would be worthwhile to investigate this in 
detail because even a Gaussian statistical variance on the 
average latency would certainly lead to a shift of the PFH 
and PFDavg. The reason is that the occurrence probability 
of multiple-point faults is determined by a polynomial, 
hence a convex function in time. Thus, the longer varia-
tions would contribute with a higher weight in the av-
erage than the shorter variations. Hence, a shift of the 
PFH and PFDavg to bigger values could be expected. On 
the other hand, a purely random timing of inspection 
intervals, which is a premise of the Markovian approach, 
leads to smaller values in the estimation of PFDavg, as we 
mentioned earlier. It would be worthwhile to investigate 
the impact of these concurring effects in detail. But this 
remains a topic for future work.

Another open point is that we assumed the periodic 
inspection and repair as perfect, resulting in resetting the 
individual probabilities of fault presence to zero after 
the inspection interval. In the case of imperfect inspec-
tion and repair, e.g., due to diagnostic gaps or human 
errors during repair, a residual fault probability would 
result after each inspection interval. This is outlined 
in IEC 61508-6 [Ref. 3], illustrating the impact on the 
evolution of the PFD and PFDavg after several inspection 

2 2 — MFAT; 3 3 — MFAT (26)

Q2 (t 0) ≤ r2  2 ; Q3 (t 0) ≤ r3  3 ; whereas Q1 (t 0) (27)

Q1 (t) ≤ r1  t ; Q2 (t) ≤ r2 (t+ 2) ; Q3 (t) ≤ r3  (t+ 3) (28)
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intervals. This resulting complication of the probabilistic 
assessment of multiple-point faults with latencies can be 
avoided if a “failure split” is applied between the detected 
fraction of a fault occurrence and the undetected one. 
Such an approach is outlined in ISO 26262-10 [Ref. 4], 
but it results in an increasing number of single events 
that need to be considered in the assessment of systems’ 
reliability and safety. As a result, the required number of 
base events in a fault tree would considerably increase. 

Further, the treatment of potential common cause 
failures (CCF) that may lead to quasi-instantaneous 
occurrence of multiple-point faults is out of the scope 
of this publication. The assessment of CCFs for dif-
ferent faults with individual failure rates also seems 
to be a topic that is rarely addressed in the literature. 
Further investigations would be required to treat this 
in more detail.

Finally, this publication deals exclusively with the 
constant failure rate model. Other models include time-
dependent failure rates (e.g., the Weibull distribution). 
If failure rates are time dependent, much more effort 
is needed to determine the multiple fault probabilities 
because the polynomial approach that we derived above 
cannot be applied. Also, this topic seems not yet to be 
investigated in detail according to our research, and be-

cause the main focus of previous publications is on the 
constant failure rate models, we consider this topic less 
relevant than those we mentioned earlier.

A target for future work will be to integrate the pre-
sented estimations for multi-point faults efficiently 
with state-of-the-art algorithms for quantitative fault 
tree evaluation. One example is the Binary Decision 
Diagrams (BDD) approach, which is used in many tool 
implementations for computation of the top event prob-
ability [Ref. 16]. Since each combination of (repairable) 
events requires a determination of a potentially different 
MFAT, the impact on the complexity of the evalua-
tion needs to be investigated (i.e., the algorithm for the 
probability cannot be simply linearized to the size of the 
BDD through caching).

Moreover, the effect of cutoffs — as a technique 
to reduce the complexity by bounding the cut-sets to 
a certain number of events [Ref. 10] — require further 
considerations with respect to the presented approach. 
Because all fault latencies in a multi-event cut-set need 
to be taken into account to determine the MFAT, further 
theoretical work on cut-off strategies (and/or heuristics 
in building BDDs) is required.

Acronym or Term

ETA Event Tree Analysis

EUC Equipment Under Control

FTA Fault Tree Analysis

MFAT Maximum Fault Accumulation Time

MTTR Mean Time To Repair

P(t) Unreliability Probability of fault occurrence

PFD Probability of dangerous Failure on Demand Q(t)

PFDavg Average Probability of dangerous Failure on 

Demand

Qavg

PFH Probability of dangerous Failure per Hour Average failure frequency

Q(t) Unavailability Probability of fault presence

Qavg Average Unavailability

r Failure Rate

RBD Reliability Block Diagram

SRS Safety-Related System

T Mission time System lifetime

Inspection interval Latency

Difference between ’s and the MFAT 

Table 1 — Terms, Acronyms and Definitions.
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See Table 1.
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